笼目六角反铁磁Mn3Ga单晶室温大反?;舳в?/span>
日期:
2024-04-22
浏览次数:
49
笼目(kagome)结构磁性材料具有独特的准二维晶体结构、可调控的拓扑能带结构和磁结构,从而表现出大的反常输运行为、磁斯格明子、手性反常等诸多新奇的物理特性。其中,笼目六角反铁磁Mn3X(Ga、Ge、Sn)合金具有拓扑能带结构,可以表现出大的磁电响应效应。同时,兼具反铁磁无杂散场、本征频率高等特性,是新型反铁磁自旋电子学器件理想的候选材料。近年来,Mn3Sn和Mn3Ge在实验上已经相继被证实其具有大的反?;舳в?em class="wx_search_keyword" style="margin: 0px; padding: 0px; outline: 0px; max-width: 100%; display: inline-block; vertical-align: super; font-size: 10px; width: 1.2em; height: 1.2em; -webkit-mask-position: 50% 50%; -webkit-mask-repeat: no-repeat; -webkit-mask-size: 100%; -webkit-mask-image: url(" 3csvg="" width="12" height="12" viewbox="0 0 12 12" fill="%23576B95" xmlns="http://www.w3.org/2000/svg" 3cpath="" fill-rule="evenodd" clip-rule="evenodd" d="M7.60772 8.29444C7.02144 8.73734 6.29139 9 5.5 9C3.567 9 2 7.433 2 5.5C2 3.567 3.567 2 5.5 2C7.433 2 9 3.567 9 5.5C9 6.28241 8.74327 7.00486 8.30946 7.5877C8.3183 7.59444 8.3268 7.60186 8.33488 7.60994L10.4331 9.70816L9.726 10.4153L7.62777 8.31704C7.62055 8.30983 7.61387 8.30228 7.60772 8.29444ZM8 5.5C8 6.88071 6.88071 8 5.5 8C4.11929 8 3 6.88071 3 5.5C3 4.11929 4.11929 3 5.5 3C6.88071 3 8 4.11929 8 5.5Z" box-sizing:="" border-box="" overflow-wrap:="" break-word="">,反常能斯特效应等,而笼目六角Mn3Ga单晶始终未被报道。中国科学院物理研究所/北京凝聚态物理国家研究中心怀柔研究部HM03课题组长期从事新型磁性功能材料的开发及物性研究,近年来对六角结构磁性材料体系有着深入的研究。例如,开发了具有自主知识产权的宽温区跨室温斯格明子新材料体系【Adv. Mater. 28, 6887(2016);Adv. Mater. 29, 1701144 (2017);Nano Lett. 18, 1274 (2018);Nano Lett. 20, 868 (2020)】,并在物性调控和器件物理研究方面取得了一系列进展【Nature 561, 91 (2018);Adv. Mater. 32, 1904815 (2019); ASC Nano 13, 922 (2019);Nat. Commun. 13, 5991 (2022)】。最近,课题组博士后宋林轩、博士生周凤和刘永昌特聘研究员等,在笼目六角反铁磁Mn3Ga单晶的制备及物性研究方面取得了重要进展。Mn3Ga为六角晶体结构,空间群为P63/mmc,由 Mn原子构成的笼目晶格以及晶格中心位置的Ga原子沿z轴堆砌而成,笼目晶格内三个近邻Mn原子的磁矩互呈120°形成非共线反铁磁结构。相较于Mn3Sn和Mn3Ge,Ga原子的价电子较少,正分Mn3Ga的费米能级距外尔点相对较远,理论预测其反?;舳绲悸式闲。≒hys. Rev. B 95, 075128 (2017).)。而经过课题组长期对Mn3Ga合金结构的研究,发现Mn3Ga多晶在富Ga的情况下可以稳定存在,并表现出交换偏置效应、拓扑霍尔效应等物理现象【J. Appl. Phys. 131, 173903 (2022);J. Magn. Magn. Mater. 536, 168109 (2021);Appl. Phys. Lett. 119, 152405 (2021).】。进一步,通过理论预测发现,Mn2.43Ga中Ga原子过量可以使费米能级上移,增大贝利曲率进而诱发大的反?;舳в??;谏鲜龇⑾?,通过助溶剂法,他们首次制备出了偏分的Mn3Ga单晶Mn2.4Ga(图1),并发现了Mn2.4Ga具有明显的各向异性大反?;舳вΓ?)。当磁场施加于笼目晶格面内时反常霍尔电导最大,室温反?;舳绲悸首畲罂纱?50 Ω-1cm-1,优于Mn3Sn和Mn3Ge(~20 Ω-1cm-1、50 Ω-1cm-1)。低温下最大可达527 Ω-1 cm-1,与理论预测结果(约530 Ω-1cm-1)相近。通过磁性测量发现,Mn2.4Ga的奈尔温度在435K,M-H曲线随磁场呈线性变化,表现出典型的反铁磁特性。该材料仅在笼目晶格面内具有微弱的磁性(0.002-0.05 μB/f.u.@10-300 K),说明反常霍尔效应并不依赖于材料磁性(见图3)。角度依赖的反?;舳вΣ饬拷峁砻?,当磁场由笼目晶格面内向面外转动时,反常霍尔电导率仅发生符号变化而数值基本不变(见图4)。进一步说明,反?;舳вΣ灰览涤诓牧洗判远醋杂诜枪蚕叻刺沤峁挂鸬姆橇惚蠢?。通过与其他典型磁性材料和拓扑磁性材料对比,可以发现Mn2.4Ga的反?;舳绲悸视胱菹虻绲悸室约按呕慷?反?;舳绲嫉墓叵稻τ谕仄舜判圆牧锨颍?)。该工作首次制备出了偏分的Mn3Ga单晶,填补了笼目六角反铁磁材料Mn3X(Ga、Ge、Sn)中对Mn3Ga单晶的研究空白,发现了Mn3Ga中费米能级调控反?;舳вΦ幕疲刺抛孕缱友骷峁┝诵碌暮蜓〔牧虾蜕杓扑悸?。相关研究内容以题名为“Large Anomalous Hall Effect at Room Temperature in a Fermi-Level-Tuned Kagome Antiferromagnet” 于2024年2月27日在线发表于《Advanced Functional Materials》杂志上,并已申请中国专利(公开号:CN 116892062 A)该项研究工作得到了国家重点研发计划,国家自然科学基金和北京市自然科学基金的支持。https://onlinelibrary.wiley.com/doi/10.1002/adfm.202316588
Hot News
/
相关推荐
2025
-
11
-
28
点击次数:
45
来源:X-MOL通过一种基于溶液化学反应的光学材料方法合成了四个 Pr-phen-?;被崛浜衔铮≒r [CH3(CH2)nCONHCH(CH3)COO]3?phenanthroline,n=4,6,8,10)。镨配合物的分子结构通过 CHN 元素分析、13C 核磁共振(13C-NMR)光谱和傅里叶变换红外(FT-IR)光谱法确定。X 射线衍射和偏振光显微镜显示,Pr(hex-ala)3...
2025
-
11
-
28
点击次数:
46
来源:X-MOL腐植酸 (HA) 普遍存在于天然水体中,有可能形成致癌消毒副产物 (DBP),这凸显了有效去除方法的必要性。本研究旨在开发一种稳定、高性能的催化剂,以提高 HA 去除效率。通过浸渍到活性氧化铝(AA)上合成了一种最佳的铈锰改性材料(CM-AA)。其创新之处在于首次利用 Mn-Ce 协同效应,结合臭氧(O?)和过氧化氢(H?O?)构建了三元催化体系。通过正交实验优化制备参数,并采用 ...
2025
-
11
-
27
点击次数:
59
来源:X-MOL结合可见光响应和高效电荷分离的半导体合理设计仍然是光催化中的根本挑战。我们报告了一种镧系合成策略,用于合成一系列对可见光响应的铋氧氯化物,LnBi2O4Cl(Ln = Lu, Yb, Er, Eu, Sm, Nd)。镧系离子整合到[Bi2O2]萤石层中,形成三氟矿[Bi2LnO 4]结构,通过电子层间相互作用诱导结构重组。该方法实现了从 500 纳米到 620 纳米的系统性吸收边缘...
2025
-
11
-
27
点击次数:
59
来源:X-MOL研究了基于稀土复合物镧二氧化物(La2O3)预处理的香蕉纤维织物的冲洗和漂白工艺。分析了稀土含量、过氧化氢浓度、氢氧化钠浓度、温度、时间和稳定剂浓度对香蕉纤维织物重量损失比、白色度、毛细作用和断裂强度的影响。优化工艺通过正交测试确定,即稀土镧二氧化物(La2O3)0.25%o.w.f.,氢氧化钠 4.5 克/升,过氧化氢浓度 7.5 克/升,稳定剂 3 克/升,在 75°...